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ABSTRACT

This report presents a comparison of the advantages and disadvantages

of choosing each of the programming languages Ada 1, C, FORTRAN 77, HAL/S,
JOVIAL J73, and Pascal as the selected language for the proof-of-concept
demonstration of the NASA/JSC Advanced Information Processing System

(AZPS). Each language, in its turn, was examined for its potential impact

on the economical development and maintenance of software that would meet

the goals and characteristics emphasized by the system requirements.

The specific criteria for evaluating each language were chosen based

on:

"AIPS System Requirements" (October 12, 1983) CSDL Report number

AIPS-83-50

• Modern studies of software reliability

• Experiences with large software programs at CSDL.

The data for this language trade study were collected during the AZPS

Technology Survey which was conducted for the NASA/JSC by CSDL as part of

the AIPS Program Phase I activities. The language data were drawn from

conferences, personal experiences, private meetings, and telephone con-

versations as well as text books, language standards, and technical jour-

nals as listed in the bibliography.

Comparisons between the six languages indicated that Ada was the best

choice for designing and coding the AIPS proof-of-concept demonstration.

Ada is a registered trademark of the U.S. Government (Ada Joint Pro-

gram Office).
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1.0 INTRODUCTION AND SUMMARY

The purpose of this study was to select the language to be used to

implement the proof-of-concept demonstration for the Advanced Information

Processing System (AIPS) under development by the Charles Stark Draper

Laboratory, Inc. (CSDL) for the Johnson Space Center of the National Aer-
onautics and Space Administration (NASA/JSC). Six languages were evalu-
ated for features that would support the characteristics of the AIPS

architecture that were emphasized by the system requirements Ill. After

comparing these evaluations, Ada was the language selected.

The languages used for comparison in this study were Ada, C,

FORTRAN 77, HAL/S, JOVIAL J73, and Pascal. These languages were chosen

based on their past, current, and/or projected use for embedded avionics

software and microprocessor applications. Other languages were excluded

due to either less common usage, similarities to a language already cho-

sen, or specialization for a narrower range of applications than required

by the AIPS program.

The criteria for evaluating each language covered five basic areas:

• Error detection, error handling, and error containment

• Modularity and separate compilation

• The abi1!ty to provide real-time system constructs

• The stability and portability of the language

• The availability of software development tools.

The criteria were chosen for their impact on the characteristics empha-

sized in the system requirements [1] for the AIPS architecture as they

apply to software, specifical]y, economic development and maintenance of
reliable, testable, manageable software that is flexible with respect to

change and growth.

Comparisons were not made between specific implementations of lan-

guages. Rather, the standards for the languages were compared based on

the evaluation criteria. Implementations were considered as available

development tools and as evidence of language stability and portability.

This document is organized in five sections as follows: Section 2

gives a brief description of the AIPS program and requirements, Section 3
describes the criteria chosen for the evaluations and comparison of the

languages. Section 4 presents the eva]uations. Section 5 presents the
conclusions drawn from comparing the evaluations.

The principal conclusion reached by this study was that Ada is the

best language choice for the AIPS proof-of-concept design and implementa-
tion. This resulted from comparing the evaluations of each language in
terms of each of the five criteria cited above.

Introduction I
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2.0 AIPS PROGRAM DESCRZPTZON

This program will develop and demonstrate a system architecture and

the associated design and evaluation methodologies to serve the need for
advanced information processing across a broad spectrum of future NASA

missions. The architecture will incorporate relevant advanced hardware

and software technologies and will provide integrated operation, reli-

abillty and fault tolerance, testability, manageability, and flexibility

for growth and change. The last of these is of particular significance
because the architecture must be adaptable to a range of applications for

both space and aircraft missions. Also, mission needs and requirements are

expected to change in time, and the system design developed by the AIPS
effort is expected to provide the flexibility to accommodate such changes

with minimum redesign, reverification and revalidation.

The emphasis of the AIPS Program will. be a proof-of-concept demon-
stration of a system architecture which will be implemented with available

component-level technologies. The design methodology, hardware/software
architecture, system modularity, and validation processes are significant

elements of the output. The attribute of change tolerance is expected to

permit the insertion of new technologies as well as permit graceful mod-
ification to support various specific applications as mentioned above.

The AIPS program should not be characterized as specific to any par-
ticular NASA application or new initiative, but rather as a system-level

pathfinder effort that is independent of other programs. It is expected

that major technology exchange between this research and development pro-

gram and specific NASA application programs will be a significant benefit.

2.1 AZPS PROGRAM TECHNZCAL APPROACH

The AIPS architecture, design methodology and testing techniques must

provide, in addition to traditional figures of merit, adaptability to the

inevitable changes and growth in mission-specific requirements. The AIPS

concept is intended to permit mission avionics to be assembled from a set

of previously validated hardware and software components. This requires

component and system ability to detect and recover from software errors,
to mask software data errors, and to use modern techniques for verifica-

tion and validation, such as the enforcement of high-order language fea-

tures. Changes in mission requirements, then, will impact only a limited
subset of hardware and software elements. The changes become additions or

deletions to the avionics system which do not result in reverification or

reva]idation of the complete hardware and software system.

In order to achieve the total set of desired system attributes, the

AIPS proof-of-concept system will be configured as a distributed system.

The intent is to provide considerable total-system capability through the

delegation of functions to multiple processing sites, each of which

requires only modest capability. Functional partitioning within the mu]-
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tiple processing sites will be determined by: the source, destination, and

character of data transfers; the physical location of system elements; and

the functional relationships between elements. Adherence to available,

broadly accepted hardware and software standards (e.g., instruction set,

communication protocol and high-order language) will be emphasized, as
w111 extensive utilization of advanced design and evaluation methodol-

ogies. The demonstration will be constrained to use only one source lan-
guage and one instruction set architecture.
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3.0 CRITERIA FOR EVALUATION AND COMPARISON OF LANGUAGES

The criteria used to compare languages were chosen for their impact on

the goals emphasized by the AIPS System Requirements, namely, reliabil-

ity, manageability, testability, cost, integrated operation, fault toler-
ance, and flexibility. We divided these criteria into five basic areas:

1. Error detection, error handling, and error containment

2. Modularity and separate compilation

3. Provision for real-time system programming constructs

4. Stability and portability

5. The availability of software development tools.

These are described in more detail below.

3.1 ERROR DETECTION, ERROR HANDLING, AND ERROR CONTAINMENT

The ability to detect errors, respond to errors during execution, and
to contain the effects of errors will directly impact both the cost and

the reliabi]ity of AIPS software over its entire life-cycle. The cost of

correcting an error will tend to increase exponentially from the time the
error occurs until it is detected and corrected; this is due to increasing

interdependence of related source code, documentation, and tests over
time, and the need to modify these items to implement the correction.

Limiting the scope of influence of an error could diminish the acceler-
ation of this cost. Eliminating and avoiding errors that tend to propa-

gate bound]essIy could further reduce cost and increase re]iabiIity.
Further, for reliability, AZPS software will need to gracefully respond to

potential errors that cannot be eliminated.

In the detailed discussions which follow, we consider four criteria

which affect the detection, reduction, and handling of errors:

1. Design translation

2. Static error detection

3. Dynamic error detection and exception handling

4. Error containment

Criteria for Evaluation and Comparison of Languages 5



3.1.1Desian Translation

The complexities of translating a design into a source code language
will affect the number of errors that occur during this task. Basic lan-

guage primitives that correspond to the design abstractions used by most
applications, such as data types and operations, could simplify this task.

Too many primitives, however, increase the probability of translation

errors due to the complexity of the source code language. No matter how

many primitives are provided by a language, some flexibility for defining
data types and operations would be required to allow for any unforeseen

design abstraction. The ability to define constructs not provided by a

language and to encapsulate these definitions so that they may be used as

primitives would balance the tradeoffs between too many and too few primi-
tives for design abstractions.

To evaluate the expressiveness of each language, we examined what

primitives could be used directly as applications design abstractions and

what primitives could be used to construct and encapsulate abstract data

types and operations. These included built-in data types, operatlons for

built-ln data types, constructs for defining user-defined data types,
built-in operations for user-deflned data types, and primitives for con-

structing and encapsulating user-defined operations. Throughout this
paper we use the following generic terms to refer to classes of the more

common built-in application data types:

integer whole numbers

float floating point, real, and fixed point data types

boolean single bit or flag types with exactly two possible values

character representations of single characters of text

string built-in array types with bit or character components gener-
ally indexed by integer values.

Other built-in types useful for applications programming are explicitly
stated. Generic terms used to refer to classes of built-in operations for
built-in data types include:

basic arithmetic addition, subtraction, multiplication,
division, and additive inverse

exponential exponent and log functions or operations

trigonometric sine, cosine, tangent, and the like

hyperbolic hyperbolic trigonometric functions

relational greater-than, less-than, equal-to, not-

equal-to, greater-than-or-equal-to, and
less-than-or-equal-to

miscellaneous arithmetic absolute value, sign, and others

6 Language Study



logical the Boolean operations AND, OR, equivalence,

and logical inverse

The following terms are used to designate primitives commonly used for

defining user-defined types=

precision specification used to define a subset of the set of possi-
ble values for float data types by a preci-

sion rule

array a single- or multi-dimensional aggregate
where each component is the same data type

and the components can be indexed by a finite

range of discrete values

Cartesian product an aggregate, known as a structure or record

in many languages, with components of one or
more different data types

address a data type for constructing linked lists and
for accessing dynamically allocated data

objects

enumerated list

range

a data type consisting of a finite set of

ordered, user-defined values which may be
used in relational operations and assignment

an ordered subset of the set of possible val-

ues for a.data type.

Primitives for encapsulating the definitions of user-defined data types

and/or operations included, but were not limited to=

procedure a named module, used to encapsulate an algorithm, that can

be invoked by name

function a module, used to encapsulate an operation, that is

invoked by name, may accept a number of inputs, and returns
a value,

task a module that encapsulates an algorithm which may log-

ically execute simultaneously with other modules, i.e., as

if it were executing on a separate processor

data block a module used to encapsulate data or data types

block a module, used to encapsulate an algorithm, that can be

treated as one statement and/or used to bound the range of

scope for another construct

To evaluate the simplicity and understandability of each language, we
examined limitations for specifying identifier names, syntax for com-

ments, the number of key words, and the number of key words that could be

understood as English. Also examined were the syntax of control struc-

Criteria for Evaluation and Comparison of Languages 7



tures, the use of punctuation, and the use of cryptic or non-English key
words.

3.1.2 Static Error Detection

Detection and correction of errors at compile time would reduce the
effort spent in testing. Eliminating these errors would decrease the cost

of configuration management through the reduction of the number of differ-

ent object modules, load modules, output listings, and data produced.
Testing and reliability would also be improved due to the minimization of
the number of errors and the kinds of errors that need to be detected

through testing.

Each language was examined for strong type checking and explicit type
specification. Strong type checking disallows implicit conversions, even
for different types with the same implementation. This forces a conver-

sion to be coded explicitly for an expression to be assigned to a variable

or parameter of a different data type. Typographical errors, uninten-
tional implicit conversions, and errors due to identical variable names in

different scopes, for example, would otherwise be difficult to detect and
locate even at run-time.

Explicit type specification allows the programmer to specify precise-

ly what values a data type may assume. The use of range limited integers
and enumerated list types to define array bounds and iterative loop con-
trol would allow a compiler to check for out-of-bounds conditions, even to

the point of eliminating run-time checks for such conditions in loops and

blocks of code. By restricting address types, a similar savings would be
possible fo_ addressing operations and linked lists.

3.1.3 Dynamic Error Detection and ExceDtlon Handling

There are classes of errors that are difficult or impossible to detect
statically. Developing code to dynamically detect and correct these

errors would significantly increase the cost of the AZPS software develop-

ment effort. Constructs that automatically detect and/or correct such
errors would not only reduce the costs but also increase software rell-

ability by reducing or eliminating errors that might otherwise result from
the designing, writing, and testing of such constructs.

Each language was evaluated with respect to the kinds of run-time

errors that the language would automatically detect. Examples include
conversion errors, data object over-flows and under-flows, and references

to unallocated data objects. Also evaluated were the means the language

provided for handling errors and exceptions. These included branching to
blocks of user-defined code within a module or at the end of a module,

aborting execution, default correction schemes, and undefined responses.

Interrupt detection is considered under real-time system programming con-
structs and is described in a following section.

8 Language Study



3,1.4 Error Containment

Some control and data structures have a potential for causing errors

which are difficult to detect and virtua]ly impossib]e to tEace. Yet, it

can be argued that there may be a need to use these dangerous constructs.

A language could reduce this need by providing alternative structures that

are more verifiable and by restricting the use and/or scope of the less

verifiable structures.

Each language was evaluated for restrictions on GOTO statements and
conditional iteration statements that could cause infinite loops. This

included examining the structures used to control iteration and the

restrictions and alternatives to the GOTO statement.

Each language was evaluated for side effects. A side effect is the

modification of a data object that is not obvious from the use of an oper-
ation or module. This could cause errors that are difficult or impossible

to detect. Constructs that can cause side effects include global identi-

fiers, ca11-by-reference parameter passing, and aliasing of variable

names. These a11ow operations and modules to bypass language-defined

interfaces to access data and program objects. The use of global identi-

fiers was evaluated concerning where and when an identifier could be

accessed (the scope of the identifier), particularly the use of the nest-

ing of modules to restrict this scope. The control and techniques for

parameter passing were also evaluated. Ca11-by-reference parameter pass-

ing by itself a11ows unintentional modifications of an argument while the

invoked module is executing. When combined with aIiasing, referencing the

same data object via different names, errors can-occur that are impossible

to detect. Ca11-by-vaIue and ca117by-value-result parameter passing

avoid such errors. However, implementations for these techniques may not

be efficient, especially for user-defined data aggregates. Restrictions

on other potential side effects that were built-in to a language were also

evaluated. These included address data types and discriminated union data

types. (A discriminated union is a Cartesian product data type with a
definition that varies according to the value of a designated component.)

3.2 MODULARITY AND SEPARATE COMPILATION

Large programs, such as AIPS, would be virtually unmanageable without

the capability of decomposing programs into modules. By encapsu]ating or

"hiding" the implementation of an algorithm or data structure, a module

would provide a boundary or interface behind which an implementation could

be referenced as a single entity and, with separate compi]ation, modified

and tested without affecting source code in the remainder of the program.

Modules also provide boundaries for error containment, testing, coding,

documentation, and the division of labor. The manner in which modu]arity

is provided by a language would affect testing, reliabi]ity, flexibility,

and manageability of the AIPS software development effort.

The following areas were specifically evaluated:

Criteria for Evaluation and Comparison of Languages 9



1. The types of modules provided

2. The interfaces between modules

3. The separate compilation and management of module'interfaces.

3.2.t Tvnes of Modules Provided

Each language was evaluated for the kinds of modules that were pro-
vided, such as procedures, functions, tasks, data blocks, and statement
blocks (See section 3._.1). The different modules were evaluated for

their independence and the ability to be nested within other modules.

3.2.2 Interfacem Between Modules

Each language was evaluated for how modules appeared to the rest of

the program and how these interfaces were checked by the language, Par-
ticular attention was payed to this criterion since interfaces between

modules are one of the largest sources of errors in large programming
efforts.

3.2.3 Seoarate Comnilation and Interface Hanaoement

Each language was evaluated concerning what modules, if any, could be
compiled separately, whether interfaces could be checked between such.

modules, and how, or if, the language provided any configuration manage-
ment for t_ese interfaces.

3.3 PROVZSZON FOR REAL-TZME SYSTEM PROGRAMMZNG CONSTRUCTS

Since the purpose of AIPS .is to provide a basic architecture for the

design and development of real-time avionics systems, the ability of a
language to provide real-time system constructs directly impacts the

amount of effort necessary to design, code, and test the system. The
existence of system constructs within a language could eliminate the need

to re-create these constructs for each application. General built-in sys-
tems constructs could also be used across a wide number of applications.

Each language was examined for existence of the following systems pro-
gramming constructs:

1. Real-time tasking constructs

2. Constructs to manipulate bits and bytes

3. Constructs for handling primitive input/output (Z/O) operations

4, Interrupt handling constructs.
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The ability to create new constructs was also evaluated.

_.3.1 Real-Time Tg_kin a Constructs

Each language was evaluated for the existence of real-time tasking
constructs. These included modules which are able to execute concurrent-

ly, in either a iogica] or physical sense; constructs to begin execution,
suspend execution, resume execution, or cancel execution of these mod-
uies_ constructs to execute these actions based on time or events; and

constructs for inter-module communication and protection against the

simultaneous access of a data object by more than one module while the

data object is being modified.

Where these constructs existed, they were evaluated for their useful-

ness and completeness for real-time systems. Where they were lacking, the

language was evaluated for the ability to create these constructs with the

built-in language constructs.

3.3.2 Ability to Manipulate Bits and Bytes

Each language was evaluated for the ability to manipulate bits and

bytes, particularly for the purpose of setting flags in special purpose

registers and for low-level I/O functions. The operations considered
included setting and resetting specific bits within a byte or word, defin-

ing a data type to correspond to a specific bit or byte within a specific
area of core, and shifting bits within a byte or word.

3.3.3 InDut/OutDut Caoabilitles

The capability of performing low-level I/0 would be, of necessity, an

implementation dependent feature on any embedded computer system. Howev-

er, the existence of constructs within a language to handle low-level I/O

defines, at the least, a common interface through which otherwise general

programs could communicate with this implementation-dependent function.

Such constructs also eliminate the proliferation of user-defined inter-

faces that might occur between programs and within the same program.

3.3.4 ExceDtion Handllno Caoabilities

Each language was evaluated for the existence and usefulness of con-

structs for handling boCh hardware exceptions and software exceptions. As
with low-level I/O, such constructs enforce a degree of consistency

through a program and between programs concerning exception handling.

Criteria for Evaluation and Comparison of Languages II



3.4 STABILITY AND PORTABILITY

The AIPS requirements for flexibility and economy imply first, that

the language used for AIPS be stable, and second, that the software be

portable to different target machines. The more a language changes the

more implementations of the language will differ, even for the same target

machine. Modifications and reinterpretations of a ]anguage increase the

probability that software written for one implementation will require
extensive changes in code, documentation, and testing to be validated on

another implementation.

The following are areas over which each language was evaluated for its
effect on this criterion:

I. The stability of the language standard

2. The enforcement of the language standard

3. The demand for the language.

3.4.t Stability of the Lanouaoe Standard

Each language was evaluated in terms of its standard, or what could be

considered a standard, for the language and the tendency for the standard
to change.

3,4.2 Enforcement of the Lanauaoe Standard

Each language was evaluated for enforcement of the language standard

by determining what body, if any, is responsible for the enforcement, the
means it could use to enforce the standard, and what incentive it had to
enforce the standard.

3.4.3 Demand for the Lanauaoe

Finally, each language was evaluated with respect to the demand for

the language. The basis for evaluation included, in general terms, how

wide-spread was the use of the language, the efforts of companies to pro-
vide implementations and tools for the language, and the efforts of other

companies to acquire these tools and implementations.

3.5 AVAILABILITY OF SOFTWARE DEVELOPMENT TOOLS

A language will be practicable for AIPS only if a useable implementa-

tion exists with relevant software development tools. The costs of imple-

menting and/or designing language compilers and tools could have adverse

impact on the economy of a development effort.
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Weevaluated

software tools:

I •

o

.

each language for the availability of three classes of

The availabiJity of implementations targeted to one of a number of

candidate processors for AIPS

The availability of other implementations, debugging tools, and

analysis tools

The availability of configuration management tools for managing a

large programming effort.

3.5.1 Availability of Imolementations for AIPS Processors

The processors that were considered candidates for
included=

1. Any possibly available MIL-STD-1750A processor

2. The Int.1 8086

3. The Intel IAPx series

4. The Motorola MC68000 series

5. The National 16016 and 32032 series

6. The Zilog Z8000 series.

the AIPS program

3.5.2 Availability of General Tools

We compared what compilers, debuggers, and other software support
tools were available on mainframe computers and systems capable of storing

large amounts of text and programs, such as the VMS and UNIX on the DEC VAX
and MVS, VM, and UNIX on the IBM mainframes. Tools specifically noted

included implementations targeted to the the host machine, cross-
reference listing generators, output listing formatters, interactive

debuggers, and assembly language listing generators to show the relation-

ships between the source code and the machine code generated by the com-

piler.

3.5.3 Confiouratlon Manaqement Tools

We eva]uated each ]anguage in terms of what configuration management
tools were available that could be used in conjunction with the language.

Criteria for Evaluation and Comparison of Languages 13



14 Language Study



4.0 LANGUAGE COMPARISONS

4.1ADA

4.1,1 Error Detection. Error Handllno. and Error Containment

4.1.1.1 Design Translation

Ada provides a relatively small number of operations for expressing

applications design. However, it does provide a variety of data types and
modules, and it allows the user to definea variety of user data types and

operations. At the same time, Ada syntax uses Engllsh-like, understand-

able primitives which assist the programmer in producing readable/ under-
standable code.

The data types Ada provides for applications include integer, float,

boolean, and character. Built-in operations on these data types are lim-
ited to basic arithmetic operations, logical operations, re]ationaI oper-

ations, and integer exponentiation. No bui]t-ln functions or operations

are provided for other exponential or trigonometric operations.

User-defined types include not only array and Cartesian product

aggregates, which may be nested, but also address data types for linked
lists and dynamic types, range constraints, and enumerated lists. Integer

precision is determined by the range of the integer type. For float data
types, floating point and fixed point, precision is expressed by an

exp]icit precision specification. The built-in data types are syntac-

tical]y equivalent to user-defined data types and can be redefined by the

programmer. However, though two data types may have exactly the same rep-
resentation, i.e., both are defined as an integer type, they are consid-

ered to be distinct and may not be used interchangeab]y.

The language provides pre-defined operations for user-defined types.
Concatenation is provided for array and string types. Operations for enu-

meration types and range types include membership tests and functions to

compute the first, last, next, and previous value of a list or range.

User-defined operations or functions may be defined accepting any

number of operators or arguments. Built-in operators, also, are syntac-

tically equivalent to user-defined operations and may be re-defined. Any
data type may be used as parameters or the returned value for a user-

defined operation or function.

The basic module types, function, procedure, block, data btock, and

task, are provided by the Ada language. The data block can be used to

encapsulate any and all definitions, including types, data, and other mod-
ules. A task module may be defined as user-defined type. All other named

modules may not be used as data types. However, they may be used to define

generic modules. Generic modules may be used to define modules in a man-
ner analogous to the way data types define data objects. Modules defined

from the same generic module differ only in the data types of designated

p_CEDIN_ P;_T v,t.A{'J}',_Oi F_i..MED
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data objects within the modules. Groups of statements may be encapsulated

by conditional control structures, by iterative control structures, and

by simple block structures. The latter may be used to limit the scope of

declarations and exception handling.

Ada allows identifier names to be as long as the length of one line;
no name may extend over more than one line. Every character in the name is

recognized by the language, including the underscore character which may

act as a spacing character within a name. The language does not distin-
guish between upper and lower case characters in identifier names.

Comments, in Ada, end at the end of the line. They are delimited at
the beginning of the comment by a double dash.

Ada uses sixty-six key words, of which only six are not English words

or do not correspond to their English meaning. Punctuation is used as
follows:

:- assignment

statement terminator

separator within lists

0 designates groups of syntactical elements

==> designates case alternatives and parameter assignments

designates the declaration of a data object

separates hierarchies of names within a full name

specifies a range of values

Ada control structures are fairly English-like and easy to under-
stand. The CASE statement, one examp]e, is shown below:

CASE x_variable 15

WHEN 'A' -> a_count := a_count + 1 ;

WHEN 'B' -> b_count :- b_count + 1 ;
WHEN 'C' -> c_count :- c_count + 1 ;

WHEN OTHERS -> other_count := other_count + 1;
END CASE;

4.1.1.2 Static Error Detection

Ada provides the ability to detect all the compile-time errors listed

in the criteria. However, Ada also provides constructs which may be used

to circumvent this checking. Since the compile-time error checking is not
strictly enforced, some effort is required to ensure good coding practices
are carefully followed.
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Ada can be a strongly typed language. The value of an expression can-

not be assigned to a variable if they are of different types. Also, an

expression or variable cannot be passed as an argument to a parameter of a

different type. Any type, including user-defined types, may be explicitly

converted (if possible) to any other type.

All user-deflned identifiers must' be explicitly declared. Type dec-

larations for float and fixed must explicitly specify the precision of the

type. Range specifications for enumerated list, integer, float, and fixed

types may be declared, but, range constraints may not always be testable

at compile-time.

Ada provides several constructs by which strong typing may be by-

passed including subtypes, derived types, overloading, and unchecked con-

version.

Subtypes allow a programmer to differentiate between type checking
that occurs during compile-time and type checking that occurs during run-

time. A subtype is defined using a type and possibly a constraint to lim-

it the possible values for the subtype. Two different subtypes are

implicitly convertible if their ranges overlap and they are based on the

same type. Errors in conversion are only detectable at run-time.

Derived data types, similarly to subtypes, are defined based on an

existing type. Derived types are implicitly convertible to the base type

only when used as arguments or returned values for subroutines.

Overloading is the practice of using the same name for more than one
subroutine or operation. For example, the multiplication operation, des-

ignated by an asterisk, "_", is used to Signify not only integer-integer
multiplication and float-float multiplication, but also integer-float and

float-integer multiplications which both return a result of the float

type. This effectively nullifies type checking between integer and float
data types for the multiplication operation. In this case, overloading is
useful for expressing the concept of multiplying float and integer values.

However, the language cannot protect against misuse of overloading to by-

pass type checking.

Finally, type checking can be avoided through the use of the built-in
function, UNCHECKED_CONVERSION, which performs assignments at the bit-
level without converting from one type to another. The language maintains

some degree of control by requiring the function to be explicitly declared
for each ordered pair of types to be assigned. The type of the input and

output for the function must match the types of the corresponding input

and output arguments.

4.1.1.3 Dynamic Error Detection and Exception Handling

Ada provides built-in run-time error testing for a number of pre-
defined error conditions. When oneof the error conditions is detected,

execution immediately branches to the end of the inner-most block of code

where it is processed by a user-defined exception handler or passed to the
next outer-most block of code as an exception.
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An exception is a pre-defined data type in Ada with one operation that
signals the exception. This allows a programmer to declare user-defined

exceptions and exception tests. The pre-defined exceptions for which Ada
provides tests are:

constraint error attempting to access a non-existent data object or to

assign a value outside the range of a data type,

numeric error dividing by zero or data overflow,

program error attempting to execute a non-existent or unaliocated
module,

storage error attempting to allocate a data object in non-existent
storage, and

tasking error causing an error during inter-task communication.

Exception handlers in Ada are always specified at the end of a block

or module of code. Handlers correspond either to one or more specific
exceptions or to a11 exceptions that have not been specified. After an

exception handler has executed, the block or module containing the excep-
tion handler is exited.

If a block does not contain an exception handler, the exception is
signaled in the block which invoked the initial block. The exception is

propagated through invoking blocks until it is processed or the outermost
block is terminated.

Ada does provide the means to selectively by-pass run-time error test-

ing. Specific tests may be turned off, such as array index checking,
accessing an unallocated data block, out-of-range value assignments, the
divide by zero condition, and others.

4.1.1.4 Error Containment

Ada provides some control structures which potentially can produce
errors that are difficult or impossible to detect and locate. In some

cases it provides alternatives to these dangerous constructs. For others,

it provides the programmer with constructs to control and limit the proba-
bility of coding undetectable errors.

The GOTO statement in Ada is limited to branching either within the

block of code that contains it or out of the block or nested blocks of code

that contain it. It is not allowed to branch into a block of code, even if

the branch first goes out of a similar block of code. It also may not

branch into or out of a module. Blocks of code include BEGIN-END blocks,

IF-THEN-ELSE blocks, CASE alternatives, and loop blocks. Statement

labe|s to be used as targets are punctuated with the syntax:

<<label_name>>

Alternative control structures to the GOTO include the EXIT statement

for branching to the end of a containing block within a module, the RETURN
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statement for branching to the end of the innermost containing module,

IF-THEN-ELSE and CASE conditional statements, and iterative statements,

such as a conditional loop, an iterative loop, and an infinite loop which

can be tecminated only by an EXIT, RETURN, or external interrupt. Both

the conditional and, of course, the infinite loops have the potential to

loop infinitely.

Ada offers multiple levels of scoping based on the nestlng of modules
and BEGIN-END blocks. The outermost level of scoping is the scope of

interfaces external to a compilation unit. These interfaces must be

explicitly specified to be included in the scope of a compilation unit.
Identifiers from enclosing scopes can be hidden by re-declaring the iden-

tifier within an inner scope. However, any identifier may be uniquely

expressed as a qualified name (speclfying the name of the module contain-

ing the declaratlon of the identifier an_ the name of the identifier) to

avoid being hidden by a declaration within an inner scope.

Ada requires ca11-by-value or ca11-by-value-result for the parameter

passing of simple data objects. Parameter passing for aggregate data

objects is not restricted to any parameter passing technique, including

call-by-reference, call-by-value, or ca11-by-value-result. Code which

depends on any of these techniques may execute differently on different

implementations of the language. Such code is "technically" erroneous,

but the language does not check for such parameter passing dependencies.

Ada provides two constructs that can be used for aliasing variables:

address data types and renaming declarations. Renaming declarations

a11ow the programmer to declare alias names for previously declared iden-

tifiers. More than one address object may point to the same data object.

Address objects are restricted to point to exactly one data type.

Discriminate unions are also restricted to represent one data type. Any

attempt to vary the definition of the data object by re-assigning the dis-

criminating component will result in an error. To vary the definition,

the entire object must be re-assigned.

4.1.2 Modularity and Seoarate Comeilatlon

4.1.2.1 Types of Modules Provided

Ada provides procedure, function, task, block, and data modules. Any

type of module may be nested within any other type of module. Task and
block modules must be nested within other modules. The data module may

encapsulate module definitions as well as data definitions.

4.1.2.2 Interfaces Between Modules

Except for the statement block module, each module in Ada has a corre-

sponding interface specification. An interface specification defines how
the remainder of a program can interact with the module. Procedure and

function interface specifications contain the name of the module, the

names and declarations of a11 parameters that may be passed to the module,

and the value returned by the module if it is a function.
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A task interface specification contains the name of the task and dec-

larations of any entries to the task. A task entry declaration has the

same syntax as a procedure interface specification. An entry is an inter-
face through which a program may rendezvous with a task and, optionally,
pass arguments via the entry parameters.

A package specification consists of declarations for the data types,

data objects, and modules by which the package communicates with the

remainder of the program. Module declarations are the same as interface

specifications. Task and package specifications must be explicitly

coded. Procedure and function specifications are derived automatically

from the corresponding module definitions when the definitions are nested

in any module other than a package module. The language checks at

compile-time that all interface specifications match the corresponding
definitions of the module.

4.1.2.3 Separate Compilation and interface Management

Ada allows separate compilation of procedure, function, and package

modules both as externa] modules and as internal modules. Package inter-

face specifications may be compiled separately from the package itself.
This allows a program that references a package to be developed separately

from the package, provided that the interface is not changed. The package
must match its corresponding interface specification to be compiled suc-
cessfully.

For external modules, such as functions, procedures, and data mod-

ules, interface specifications must be compiled before they are refer-

enced by other modules. Once compiled, they may be included in the scope

of another module by coding the specification names at the beginning of
the referencing module.

Internal modules may also be specified for separate compilation. The

modules in which they are nested must be compiled first to establish the

scope in which the internal module is to be compiled. The scope of

external modules may be limited explicitly to such separately compiled

internal modules without including the external module in the scope of the

outer nesting module.

4.1.3 Provision for Real-Time System Proorammina Constructs

4.1.3.1 Real-Time Tasking Constructs

Ada provides constructs for performing real-time operations for con-

current modules. Although the constructs do not exactly match the oper-

ations stated in the criteria, they may be easily adapted to execute these

operations.

The language provides modules, known as tasks, which can execute con-

currently in either a logical or a physical sense. The main or initial

procedure can execute concurrently with the tasks. Task execution is ini-

tiated by either declaring or allocating the task as a data object.

Declared tasks are executed as soon as the program is loaded and initial-
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ized. Execution of dynamically allocated tasks is initiated at the moment

of allocation.

Tasks may be terminated by completing execution, by executing a TERMI-

NATE statement, or by the execution of an ABORT statement. The TERMINATE

statement is allowed only within the task to be terminated. Execution of

a TERMINATE statement may be controlled externally via rendezvous as

explained below. The ABORT statement may be executed by any module in

whose scope the task is known.

A task may be suspended in four ways: by a rendezvous, by the internal
execution of a DELAY statement, by an external interrupt, or by a higher

priority task becoming ready for execution. The latter cause is

implementation-dependent. Execution suspended by an external interrupt
is resumed after the interrupt is serviced. A task suspended by a rendez-

vous, a DELAY statement, or a higher priority task is placed on a queue to
await its turn for execution. The manner in which this queue is organized

is also implementation-dependent.

A rendezvous is a point at which the execution of two modules can be

synchronized. It is initiated by a module making a call, similar to a
procedure call, to an entry in a task module. The rendezvous is completed
when the called task entry completes the execution of the acceptance of

the call. More than one statement may be executed as part of the accept-

ance sequence. During this acceptance, the calling task is suspended.

The calling _ask may also be suspended while waiting for the called

task to accept the call. Alternatively, the execution of the accepting

_peration by the task entry may cause that task to be suspended. Con-
structs may be used to control the length of time the ca11ing task is sus-

pended before the call is accepted or canceled. The suspension of the
called task may also be controlled by specifying the maximum time the task

may be suspended, by conditional expressions, or by alternative accept
sequences (a task may contain more than one entry) and/or the TERMINATE
statement.

Information may be exchanged between concurrent modules through

parameter passing during entry calls or through global data objects. The
mechanism for entry call parameter passing is equivalent to procedure call

parameter passing. Since an entry call is a synchronization between the
two tasks, there is no need to protect the data objects from simultaneous

access by the two modules. The parameters used by the task entry are via-

ble only during the execution of the acceptance.

Global data objects are not automatically protected from simultaneous

access. The ability to provide this protection is

implementation-dependent. When an implementation allows protection to be

specified, the protection is limited to data objects that may be accessed
in one uninterruptable operation.

4.1.3.2 Ability to Manipulate Bits and Bytes

Ada does not provide built-in data types or operations for manipulat-

ing bits or bytes. The user can define operations for manipulating data
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types that represent physical bits and bytes. Constructs for defining

such data types are known as representation specifications. These may be

provided on an implementation-dependent basis. When provided, the con-

structs must adhere to the defined standard syntax. They include the
specification of the amount of storage for a data type, the specification

of bit and word representation of a data type, the specification of the

addresses of data types and modules, and the ability to encode machine
language instructions.

An implementation may provide constructs to control the amount of

storage in which data types are stored. These may be used to control how

many bits and words are used to represent the data type and/or the packing
density of aggregates of the data type. A PACK construct may be provided

to minimize the unused memory space between components of data aggregates.
The details of how this construct operates are implementation-dependent.

The bit and byte representation of data objects may be specified for

enumerated lists and Cartesian product data types. Constructs can specify
what bit pattern should be used to distinguish one value from another in

an enumerated list data type. The representation of the components of a
Cartesian product data type can be explicitly specified in terms of the

word and bit positions to which components are mapped. In addition, an

implementation may provide a procedure for assigning the bit-pattern of

one data object to another without performing any conversion or testing
whether the bit-pattern is legal for the assigned data type. This proce-
dure must be explicitly declared once for each different combination of

data types to be assigned in this manner. Though no type checking is per-

formed during the assignment, the types of the arguments passed to the
procedure are checke_ by the language.

Constructs may be provided to specify the explicit memory locations of

one or more data objects and/or modules. This allows the programmer to
control any bit or group of bits in addressable memory. There are no

checks, however, on the effect this may have on the reliability of code.

An implementation may provide a data module named MACHINE_CODE. When

provided, this module must define Cartesian product aggregates to repre-
sent the machine instructions for the target machine. Ada restricts the

use of these Cartesian product data types to user-defined procedures. The

procedures may not contain any data type or data object declarations.
They also may not contain any code other than the machine-instruction data
aggregates.

4.1.3.3 Input/Output Capabilities

The provision of I/O subroutines and data types by Ada are

implementation-dependent in the same manner as representation specifica-
tions (See "Ability to Manipulate Bits and Bytes" above). When provided,

these routines must adhere to the standard language syntax. They include
functions, procedures, and data types to create, open, close, and interro-
gate files, and to execute stream and direct access I/O.

There are two predefined low level I/O procedures: SEND_CONTROL and

RECEIVE_CONTROL. Both procedures accept two arguments, one to specify the
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device and the other to specify the data to be sent to or received from the

device. The data types of the parameters are implementation-dependent as

are the actual procedures.

4.1.3.4 Exception Handling Capabilities

The language provides the ability to specify a task entry as an inter-

rupt handler. The manner in which the entry call is made is

implementation-dependent.

The address which receives control due to a given interrupt may be

explicitly attached to a task entry immediately following the entry decla-
ration. The interrupt is handled as a high priority entry call. If it

requires immediate attention, it is treated as a conditional entry call.

If the interrupt can wait, it is treated as a timed entry call. Queued

interrupts are treated as regular entry calls.

Interrupt initiated entry calls have a higher priority than regular

entry calls. They may bypass scheduling to be executed immediately. Data
associated with an interrupt may be passed as an input parameter to the

task entry.

4.1.4 Stability and Portab|11tv

4.1.4.1 Stability of the Language Standard

Ada is defined by the Military Standard 1815A of January 22, 1983.

This is also the approved American National Standards Institute, Inc.,
standard as of February 17, 1983. Although it is the practice of ANSI not

to change an approved standard for five years, the Department of Defense

could change its standard at anytime. The DoD has made it known that,

barring some unforeseen problem in implementing the language, they do not

intend to initiate any changes.

4.1.4.2 Enforcement of the Language Standard

Ada is a registered trademark of the U.S. Department of Defense

through the Ada Joint Program Office (AJPO). The DoD has stated the poli-

cy that the term Ada may not be applied to any implementation unless it

complies with MIL-STD-1815A. To enforce compliance, any and al] implemen-

tations must pass a group of tests maintained and distributed by the Ada

Va]idation Office (AVO) of AJPO. Each imp]ementation must, thereafter, be

re-va]idated within a year after validation and every year fo]Iowing. If

no changes have been made to an implementation, then it may be a]lowed to

delay re-validation for no more than two years. There are several suites
of tests for each version of the test to help ensure that impIementatlons

strive to comply with the standard and not just the validation tests.

The validation tests do not currently cover the entire language stand-

ard. The current versions of the tests do not include representation

specifications, interrupt handling, priority, MACHINE_CODE, and other
constructs that tend to be implementation-dependent. Two more versions of

the tests are currently under contract to be produced by the end of 1984.
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The AVO has already refused validation to one implementation of the
compiler due to failure to pass a current version of the tests.

Beyond validation, th_ AJPO has stated that it will consider legal
action to disallow implementations that do not otherwise meet the language
standard.

4.1.4.3 Demand for the Language

Under Secretary of Defense, Dr. R. J. OeLauer has distributed a memo
[2_ with the intention of making it a DoD directive that all DoD embedded

computer systems that are designed after July 1, 1984, be required to use

the Ada programming language. Two contracts have been granted by the Air

Force and Army to produce Ada compilers and Ada programming support envi-
ronments on the the DEC VAX and the IBM 370-series computers, respective-

ly. Twenty to thirty other companies have begun work producing Ada
compilers and Ada related tools for education and development, of which

two companies and one University have succeeded in producing validated Ada

compilers. The intense effort and investment by the DoD and private com-

panies to provide Ada make it highly likely that it will be in high demand
for the next several years.

4.t.5 Availability of Software Development TOO]|

There are only three validated implementations of Ada currently

available. However, there are many major efforts to produce compilers and
tools for the language. Several implementations potentially useful for

AIPS are scheduled to be validated in 1984. Included with these implemen-
tations are Ada Programming Support Environment (APSE) of varying quali-
ty.

4.1.5.1 Availability of Implementations for AZPS Processors

There are currently no validated Ada compilers targeted to any of the
candidate AIPS processors. Several implementations are under develop-
ment, however, including:

Intel IAPx 186 produced by Zntel for internal use, hosted on the
target processor

Zntel ZAPx 286 produced by Intel for internal use, hosted on the

target processor

Intei ZAPx 432 produced by Intel for internal use, hosted on the

target processor

Zntel 8086 produced by SofTech, to be validated in 1984,
hosted on the DEC VAX

MZL-STD-1750A produced by Boeing, beginning development, to be
validated in 1985,
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Motorola MC68000 produced by Telesoft, to be validated in the

spring of 1984, hosted on the target processor,
others on the DEC VAX and IBM 370 mainframes to be
validated in 1984

Motorola MC68010 produced by Telesoft, to be validated in 1984 or
1985, no plans to produce production quality com-

piler

National 16032 produced by National, beginning preliminary devel-

opment,

National 32032 produced by National, beginning preliminary devel-

opment,

Z i ! og Z8001 produced by Zilog, beginning preliminary develop-

ment,

Zilog Z8002 produced by Zilog, beginning preliminary develop-

ment,.

4.1.5.2 Availability of General Tools

Several tool sets for software development of Ada programs are under

development. Full information and schedules are not yet avai]ab]e for

many that can be used for AIPS.

The Ada Language System (ALS) by SofTech is an APSE hosted on a DEC

VAX consisting of a command language, Ada compile_ targeted to the VAX,

VAX assembler, VAX linker, VAX debugger, VAX assembly listing generator,

data base management system, and text scripting tools for documentation,

The command language is based on Ada. The data base management system is

integrated with the Ada compiler. The tools in this system may be retar-

geted to to other processors and even used with other languages.

Other systems under development are similarly based on the ALS or on

the UNIX operating system.

4.1.5.3 Configuration Management Tools

Configuration management is partially built into the language. How-

ever, tools will be necessary to control and maintain different versions

of source code, object modules, load modules, test cases, and documenta-
tion.

The ALS provides configuration management for a large programming

effort. A directory keeps track of different revisions of source code,

object code, load modules, test data, and documentation text. Little used

physica] information can be off-loaded to secondary storage to relieve

crowding on the development system.
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4.2 C

4,2.1 Error Detection. Error Handllnfl. and Error Containment

4.2.1.1 Design Translation

The language C provides some built-in and user-defined data types and

offers a wide range of expression. However, enumerated lists and ranges

are not provided as a type and user-defined data types canno_ be passed or
returned directly from a function. Also, though expressive, the language

relies heavily on punctuation and operator symbols rather than key words.

Though it is possible to write readable code, the language makes no

attempt to enforce this practice.

The application data types provided by C include integer, float,
boolean, and character. Operations are limited to basic arithmetic oper-

ations, the remainder operation, logical operations, and relational oper-

ations. Trigonometric and exponential functions are not provided by the

language.

User-defined types include address data types and array and Cartesian

product aggregates for al1 data types, including nested aggregates. Up to
three relative levels of precision for float data types and three levels

of ranges for integer data types may be specified. Precision and range

specifications are optional and implementation-dependent. Parameters and
returned values from functions, howe_er, are limited to non-aggregate

types (built-in types and address types). A user-defined type can be

passed and returned only via an address type.

Hodules provided include functions, procedures, block, and compila-

tion units. Compilation units provide a means of encapsulating function,

procedure, data, and type declarations. Groups of statements may be
encapsulated in a block to be treated as a slngle statement and to limit

the scoping of variables.

Identifier names distinguish between upper and lower case letters and

the underscore character. No limit is placed on the length of a name, but

only the first eight characters are significant in name identification.

Comments are delimited by the pair of double character symbols _'/_'

and "_/". There is no limlt to the length of a comment.

The language has twenty-eight key words of which only six are not Eng-
lish. However, C relies heavily on symbolic punctuation. For example,

blocks are delimited by braces. Other examples include the iterative

FOR-loop:

FOR ( value = 1; value =12 ; value - value + 3 )

some_procedure(value);

and the the switch expression:

value1 ? value2 : value3 ;

PRECEDIN_ PP._E _;-7,;i K r_O_ i:_L_h:_L
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which returns the second or third value ("value2" or "value3" in the exam-

ple above) depending on the boolean value of the first expression
("value1" in the example above). Yet another example is increment and
decrement operations=

Y-Y+1 ;

is equivalent to

Y+=I ;

which is equivalent to

y-I-I- ; or-H-Y ;

The same syntax may be used with the minus operator.

Some control structures do approach English in their appearance, such
as WHILE loops:

WHILE (value=5)

value = some_function ;

and

DO

read_something ;
WHILE (not_end_of_file)

and the IF statement:

ZF (value < 5)

value = 5 ;
ELSE IF (value > 10)

value = 10 ;
ELSE

value = next value ;

The language provides a preprocessing facility for lexical substi-

tutions. This allows a programmer to define and use understandable key
words in place of required punctuation; the punctuation would be substi-
tuted for the key words prior to translation.

4.2.1.2 Static Error Detection

This language is weakly typed. Most built-in data types are converti-

ble when mixed in an expression or an assignment. However, all data iden-
tifiers must be explicit]y dec]ared.

C allows character, integer, and float data types to be implicitly
converted to integer or float, depending on whether or not a float data

type is used in the expression or statement. Boolean types are not

declared. In the correct context, integer types are interpreted as
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boolean types. Float data types are not legal as subscripts, Each
address data type is restricted to point to exactly one data type, both

for assignment and parameter passing. However, type checking of parame-

ters is only performed when the function or procedure definition and the

invoking statement are in the same compilation unit.

Functions are implicitly assumed to return integer values unless

explicitly declared otherwise.

4.2.1.3 Dynamic Error Detection and Exception Handling

C provides no language constructs for run-time error detection. Nei-

ther does it provide constructs for exception handling. Run-time errors

are defined by the language, but the manner in which they are handled is

implementation-dependent. In addition, some errors will produce unde-
fined results.

4.2.1.4 Error Containment

The language C relies on data and control constructs that can produce

errors that are difficult or impossible to detect or locate. Some primi-

tive operations operate as slde effects. The language does contain struc-

tured constructs to e11minate the use of the GOTO statement, but the power

of address arithmetic is difficult to contain.

The GOTO statement in C is restricted to statement labels within the

same scope as the GOTO statement. Statements are labeled bY preceding

them with a simple name followed by a colon. Structured control con-

structs include two different forms of conditional loops, an iterative

loop, the IF-ELSE conditional, and the CASE conditional.

C provides multiple leve]s of scoping beginning with external vari-
ables as the outermost scope, and followed by compilation units, function
definitions, and nestings of statement blocks. Al1 functions are globally

accessible. Global data objects defined in one compilation unit must be

redeclared within the scope of another unit before they can be accessed by
the second unit. Otherwise, there are no restrictions concerning access

to variables declared in an outer scope except as follows: an identifier

from an outer scope may be hidden by re-declaring the identifier within an

inner scope.

Parameter passing is strictly call-by-value. This would eliminate

the call-by-reference problems except that C re]ies on address data types

to pass aggregate types to and from functions and procedures. Address
types are restricted to point to their declared data types. However,

address arithmetic allows the programmer to increment or decrement an

address by the size of its data type. There are no restrictions on the
number of increments and decrements. Also, there are no restrictions on

the increments and decrements of array indices, which are effectively

another form of address data types. This leads to an error containment

problem as great as the unrestricted GOTO.

Address arithmetic, array indexing, integer, and float increment and

decrement operations are available as side effects within expressions.
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The operation may take place either before or after the expression is

evaluated as specified by the programmer.

Discriminated unions are also easily abused in C. The programmer is

free to change the discriminate to reinterpret a data object under a dif-
ferent data type definition.

4.2.2 Modularity and SeDarate Comuilation

4.2.2.1 Types of Modules Provided

The language C provides three kinds of modules: function, block state-

ment, and data modules. Function modules may be referenced as procedure
modules by ignoring the value returned by the module.

The C data module is the compilation unit. A compilation unit con-
tains data type, data object, and function declarations and definitions.

A function module must be nested inside a compilation unit. Functions may
not be nested inside functions, however.

Block statement modules must be nested inside functions. They may be
nested within other block statement modules.

4.2.2.2 Interfaces Between Modules

The interfaces for functions are specified in the function defi-

nition. The values returned by a function are assumed to be integer
unless-the function is declared as another data type. Function interfaces

are checked by the language only in the compilation unit containing the
function definition. Between compilation units, there is no interface
checking.

For the interface between compilation units, external data object and
data type definitions must be explicitly declared to be included in the
scope of another compilation unit. The names of external functions do not

need to be declared unless they return a value other than integer. The
language does no checking of the interfaces between compilation units.

Block statements do not require any interfaces since they are treated
as a statement.

4.2.2.3 Separate Compilation and Interface Management

Only compilation units may be compiled separately. C does provide an

include facility to copy source code from other files into a compilation

unit. This can be used to ensure consistent declarations of global types
and objects between different compilation units.

No facilities are provided for interface management since the lan-

guage does no interface checking between compilation units.
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4.2.3 Provision for Real-Time System Proarammina Constructs

The language does not provide very many constructs for system program-

ming. However, the ability to address any part of memory via address

operations and to easily manipulate bits allows any real-time functions or
routines to be designed for an application, coded at the physical bit-

level, and encapsulated within functions.

4.2.3.1 Real-time Tasking Constructs

C contains no real-time systems language constructs.

4.2.3.2 Ability to Manipulate Bits and Bytes

C provides a full array of basic bit operations including shift-left,
shift-right, AND, OR, exclusive OR, and logical complement (not) to manip-

ulate integer data types as bit-strings. The number of bits in each inte-

ger type is implementation-dependent.

The language allows access to any addressable memory through address

arithmetic operations. Indices to arrays and address data types may be
incremented and/or decremented without bounds to provide this access.

4.2.3.3 Input/Output Capabilities

C provides low level I/0 subroutines READ and WRITE. Both accept two

arguments: one to indicate the I/0 device and the second for data.

The syntax and semantics for a11 other low level and higher level I/0

functions are implementation-dependent. They include subroutines for

opening and closing files and for seeking positions within files.

4.2.3.4 Exception Handling Capabilities

C provides no exception handling constructs.

4,2.4 Stability and Portability

4.2.4.1 Stability of the Language Standard

For the language C, we used as a standard the "C Reference Manual",

the first appendix in the book The C Programming Language by Brian

Kernighan and Dennis Ritchie, who are commonly considered the original

designers of the language. Both people worked for Bell Laboratories,
Inc., which a]so owns the licensing rights for UNIX, the operating system

for which C was developed.

Almost a11 of the UNIX operating system is written in C. Implementa-

tions of the language C generally tend to be compatible to the extent that

they can be used to implement UNIX. The language is also being used out-

side of UNIX environments, however, and there is no official standard

which implementations can attempt to follow.
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The American National Standards Institute (ANSI) has begun work on an

ANSI standard for C. ANSI standards, though generally accepted, are

applied voluntarily.

4.2.4.2 Enforcement of the Language Standard

There is currently no enforcement of any standard for the C language.
Any enforcement of a future ANSI standard will be limited to implementa-
tions claiming to fo]iow the ANSI standard.

4.2.4.3 Demand for the Language

The operating system UNIX, under licensing agreements with Bell Labo-

ratories, is available on DEC computers, IBM mainframes, and a host of

minicomputers and personal computers. The operating system and operating
system tools are almost totally written in C. The current demand for the

operating system assures that C will be available for many years on vari-
ous systems.

4.2.B Availability of Software DeveloPment Tools

C is generally available on many mainframes and microprocessors for

implementing the UNIX operating system. Since the use of the language has
been steadily growing over the last ten years, there is a mature set of

tools available for developing and testing C code.

4.2.5.1 Availability of Implementations for AIPS Processors

The language is available on the following microprocessors: ""

• Intel IAPx 186

• Intel IAPx 286

• Motorola MC68000

• Motorola MC68010

• National 16032

• National 32032

• Zilog Z8001

• Zilog Z8002

• Zilog Z8003

4.2.5.2 Availability of General Tools

C is available on most DEC mainframe computers and on IBM 370 series

computers. There are a number of tools that, when combined with an imple-
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mentation of the language, create a more strongly typed language less

prone to uncontrollable errors. These tools are written in C for the UNIX

operating system and are portable between UNIX operating systems. They
include an interactive C debugger, the program CREF that generates cross-

reference listings for C source code, and the program LINT.

The program LINT searches C source code to enforce stronger typing and
detect interfacing errors. The program detects and flags:

implicit conversions,

mismatches between arguments and parameters in function and proce-
dure calls, even between separate compilation units,

• boolean expressions that have a constant value,

• unused variables, functions, and code,

• uninitialized variables, and

• non-portable language features.

The program also provides diagnostic messages which are generally superi-

or to those commonly found in most imp]ementations of C.

4.2.5.3 Configuration Management Tools

The C compiler and software tools are often purchased as a package

with the UNIX operating system. UNIX provides a hierarchial filing system
for software development and the MAKE program. This system is available

on both DEC and IBM mainframes.

The MAKE program is used to keep track of the interdependencies of the

modules used to create an entire program. When a newly modified modu]e

needs to be compiled, MAKE can automatica]ly specify that all the modules

dependent upon the modified module a]so be recompiled. This task is

extremely useful for large software efforts containing many modu]es. (The

MAKE program is not limited to the language C. It may be app]ied to other

programming languages or mixtures of programming languages as well.)
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4.3 FORTRAN 77

4.3.1 Error Detection. Error Handllna. and Error Containment

4.3.1.1 Design Translation

The language FORTRAN 77 provides rudimentary data types for applica-
tions with a wide complement of operations for each data type. However,

aside from arrays, there is no facility for defining new data types.

Function, procedure, and data modules are provided, but no task modules

existin the language.

The applications oriented data types provided by FORTRAN 77 include

integer, float, double precision float, complex, boolean, and character

string. Bit manipulation functions allow integers to be used as bit-
strings. Operations on these data types inc]ude basic arithmetic oper-

ations, integer and float exponentiation, logical operations, relational

operations, and character string concatenation. Zn addition, FORTRAN 77

provides a wide range of trigonometric, exponential, hyperbolic, and oth-
er mathematical functions. Zt also provides character-string and bit-

string manipulation functions.

The only user defined data types allowed by FORTRAN 77 are character

string types and arrays of built-in data types. Zn both cases, the length
of the character string type or array type may be explicit]y specified.

There is no provision for specifying the precision of other built-in data

types. All data types may be passed as arguments to functions and subrou-
tines and returned as values from a _unction with the exception that

arrays may not be returned from a function.

FORTRAN 77 provides the programmer with program, function, and proce-
dure modules, and data for encapsulating code and data. A special BLOCK

DATA module is provided to initialize data in data modules. Groups of

statements may be encapsulated by the ZF-THEN-ELSE-END-ZF block struc-

ture.

The length of identifiers in FORTRAN 77 is limited to six characters.
Only letters and digits are allowed, and lower case is not distinguished

from upper case.

Comments are terminated by the end of a line and denoted by either an

asterisk, "_", or a "C" in the first character of a line.

There are over one hundred key words used in FORTRAN 77. Many of

these are names of built-in functions, no longer than six characters, and
are abbreviations for the functions they represent. Some are recognizable

as engineering notation, such as SIN, COS, and LOG. However, others may

appear cryptic depending on the background of the user, such as ERF, DBLE,

AINT, and CONJG.

The semantics of contro] structures in FORTRAN 77 are not generally

understandable from the English of their syntax. For example, conditional

constructs such as:
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GOTO (100, 200, 315, 400) THIS1
100 iacnt - iacnt + 1

GO TO 500

200 ibcnt = ibcnt + 1
GO TO 5O0

315 iccnt - iccnt + 1

GO TO 500

400 occnt - occnt + 1
500 CONTINUE

and

IF (VALUE-6) 415, 512, 512
415 value - 5

512 CONTINUE

require knowledge of these structures to know that the numbers represent
labels of statements to which control is to be switched. Neither do they
convey the manner in which the language chooses the statement number in

each list. The iterative loop structure is similarly cryptic.

DO 325 ZLOOP - 1,12,3

Here, the variable ILOOP assumes the values 1, 4, 7, and 10 for each iter-

ation of the statements following the DO statement up to the statement
labeled 325.

4.3.1.2 Static Error Detection

FORTRAN 77 is a weakly typed language. There are almost no

restrictions for implicit conversion between numeric data types. Inte-
ger, float, and complex data types are freely converted when mixed in

expressions and assignments. Implicit type conversion is not allowed for

parameter passing, for array subscripts, which must be integer, and
between logical, character, and numeric data types. Implicit conversion
during parameter passing cannot be checked at compile-time, however.

FORTRAN 77 also allows implicit identifier declaration. The program-
mer can use default conventions for implicit declaration, alter the

implicit conventions, or specify that no implicit declarations are
allowed.

4.3.1.3 Dynamic Error Detection and Exception Handling

FORTRAN 77 provides no constructs for detecting general run-time

errors. If an error is detected during run-time, the language attempts to

fix the error through a pre-defined standard actions. The programmer has

the option of specifying alternate execution for errors that occur during

the execution of speclfic I/O statements. This is implemented by specify-
ing a statement label (within the I/O statement) to which execution should
branch if an I/O error is detected.
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4.3.1.4 Error Containment

FORTRAN 77 relies on control structures which can be extremely diffi-

cult to test. Its dependence on two levels of scoping, aliasing, and

call-by-reference parameter passing create an environment with tremendous

potential for side effects.

The GOTO statement, and forms of the GOTO statement, are the main con-

troI structures used in FORTRAN 77. The on]y restriction is that the tar-

get statement ]abe] be in the same scope, or module, as the GOTO
statement. Statement ]abels are expressed as numbers in the first five

character positions of a source code line. The only alternatives to the

GOTO are the RETURN statement, the procedure CALL and function reference,

and the block IF-THEN-ELSE-END-IF statement.

The language offers two levels of scoping: local and global. Global
variables are grouped together in data modules. A subroutine may gain

access to data in a data module by declaring the module internally. To be
accessed, data within the module must be mapped to local]y declared vari-

ables. The only restriction concerning what and how the data within a
data module is accessed is that no data item be directly accessed as more

than one data type. A11 procedures and functions are globally accessible

without restriction.

Parameter passing in FORTRAN 77 is always call by reference, even for

function modules.

The language provides an EQUIVALENCE statement to reference the same

data object using different names and data types. This allows a data

object to be referenced not on]y by two different names but also as two

different data types.

4.3.2 Modularity and Separate Compilation

4.3.2.1 Types of Modules Provided

FORTRAN 77 provides procedure, function, data, data initialization,

and program modules. The data module must be nested within the other mod-
u]es. No other nesting is allowed.

The data initialization module defines the values to be used to ini-

tialize the data in a data module.

Each program must have one program module from which execution begins.

4.3.2.2 Interfaces Between Modules

The interfaces to procedure and function modules are derived from the
definitions of the modules. The data module is itself an interface to any
module that declares the data module. A program module has no data inter-

face.
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The language does not provide any checks between the interfaces of
modules. There are no checks to insure that variable declarations and

mappings to data modules are consistent between modules.

4.3.2.3 Separate Compilation and Interface Management

Program, function, and procedure modules may be compiled separately

or together. No interface management is provided since no interface
checking is performed,

4.3.3 Provlslonfor Real-Time System Proarammlna Constructs

4.3.3.1 Real-Time Tasking Constructs

The language FORTRAN 77 provides no real-time tasking constructs.

4.3,3.2 Ability to Nanipulate Bits and Bytes

FORTRAN 77 allows integer data types to be manipulated as bit-strings
through built-in functions.

There is no provision in the language to generate machine code

instructions for manipulating special purpose registers on a target
machine.

4.3.3.3 Input/Output Capabilities

FORTRAN 77 provides no low level I/0 handling functions.

It does provide functions for direct access and stream 1/0 operations

for the bit-representations of data objects. The programmer may open and
close files for reading or writing.

4.3.3.4 Exception Handling Capabilities

FORTRAN 77 has no provisions for interrupt handling. The lack of an
address type in the language makes it difficult to write constructs for
handling interrupts.

4.3.4 Stability and Portability

4.3.4.1 Stability of the Language Standard

The standard we used for FORTRAN 77 is the ANSI standard X3.9-1978

known as FORTRAN 77. ANSZ has made it a practice not to change their
standards more than once every five years.

4.3,4.2 Enforcement of the Language Standard

The ANSZ standard for FORTRAN 77 is applied voluntarily. ANSZ may

take legal action when an implementation makes false claims of following
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the standard. Implementations may include disclaimers stating that they

implement a subset of the standard or the standard with extensions.

4.3.4.3 Demand for the Language

FORTRAN has been in wide-spread use for many years on mainframe com-

puters for engineering and other app]ications, New and revised implemen-
tations of the language are vo]untari]y providing aI] the features of
FORTRAN 77. However, most imp]ementations include extensions to the

standard.

4.3.5 Availabilltv of Software DeveloDment Tools

4.3.5.1 Availability of Implementations for AIPS Processors

We did not find implementations of FORTRAN 77 or FORTRAN 77 with

extensions for any of the candidate microprocessors.

4.3.5.2 Availability of General Tools

Implementations that are extensions of FORTRAN 77 are available on the
DEC VAX and IBM 370 mainframes. In both implementations, non-standard

extensions can be flagged by the compiler. Both implementations include
identifier cross-reference and and attribute listing generators.

4.3.5.3 Configuration Management Tools

We found no configuration management tools specifica]ly made for
FORTRAN 77. Rather, tools were tailored to specific implementations of

the language or to specific target processors. Many imp]ementations have
an INCLUDE statement which may be used to copy text, such as declarations

for data modu]e variables, into compilation units. This feature can be

used to guarantee data module agreement between different modules.
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4.4 HAL/S

4,4,1 Error Detection. Error Handlina. and Error Containment

4.4.1.1 Design Translation

The language HAL/S provides matrix and vector data types as well as

integer, float, boolean, bit-string, and character-string. Operations
for these types include basic arithmetic operations, integer and float

exponentiation, logical operations for boolean and bit-strings, concat-
enation for character-strings and bit-strings, vector and matrix multi-

plication, and matrix exponentiation, transposition, and inversion.
Built-in functions provide trigonometric, hyperbolic, exponential, and
other mathematical operations for integer and float data types as well as

character-string manipulation.

User defined types are limited to aggregates of the built-an types in

the form of arrays and Cartesian products. A restricted address data type
can be used to create linked lists and other structures. Strings, arrays,

vectors, and matrices may be indexed by individual component, a slice of

contiguous components, or, to produce an arrayed result, by an array of
subscripts. User-defined functions and procedures can accept any data

type as arguments, and functions can return any data type.

Procedures, functions, programs, and tasks are provided as modu]e

types. An update b]ock module is used to protect groups of data from
simultaneous access by more than one task at the same time. A COHPOOL

modul_ encapsulates data for interfacing p_rposes. Groups of statements

can be encapsulated by a BEGIN-END block to be treated as one statement.

Identifier names are limited to thirty-two characters in length,

inc]uding upper-case and lower-case letters, digits, and the underscore
character. A]] thirty-two characters are significant for identifying a

name.

Running comments are begun and terminated by the symbols "/*" and
"*/", respectively, and may be limited in length by the implementation.
An alternate form for comments may be designated by a "C" as the first

character of a line and terminated by the end of the line.

HAL/S uses almost one hundred key words of which eighty-eight are Eng-

lish and have an English meaning. The language has fourteen operator sym-

bols, some of which are used for subscripting arrays and strings.

Alternatively, both subscripts and exponents can be specified using an

optional three-line coding format. Each main line of code may be
optionally specified by an "H" in the first character position of the

line. An optional exponent line preceding a main line can be indicated by
an "E" in the same position, and a subscript line immediately fol]owing a

main line can be indicated by an "S'. Exponents may appear in the expo-

nent line immediately following the base of the exponent, and likewise for

subscripts. For example:

PRECEDING PAGE Bt.A,_IK riOT FILMED
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E 2 3

H a_matrix - x + y
S 2,3

The syntax for HAL/S declarations and control structures is relative-

ly English-like. Declarations, for example, use English key words:

DECLARE ID_MATRIX MATRIX (3,3) INITIAL(I,O,O,O,I,O,O,O,I);

Conditional structures appear as follows:

IF value > 3 THEN

value = 3 ;
ELSE

value = value + 1;

and

DO CASE test_number;

ELSE other count - other_count + 1;

one count = one_count + 1; /* case 1 */
two_count = two count + 1; /* case 2 */

three_count = three_count + 1; /* case 3 */
END;.

Iterative loops appear as follows:

DO WHILE (test_number > 3);

test_number = some function;
END;

and

DO UNTIL (end_of_file) ;

READ(5) character_data;
END;

and

DO FOR x_number - 1 TO 12 BY 3;
CALL some_procedure(input1,
END;

input2) ASSZGN(outputl, output2);

The last example also demonstrates a procedure call. Arguments that are

assigned values by the procedure are explicitly stated as such both by the
call and by the procedure definition.

4.4.1.2 Static Error Detection

The HAL/S language is also a weakly typed language. The language does

provide some control over the precision of data types, though no range
control outside of precision, exists.
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HAL/S a11ows implicit conversions between integer, float, character-

string, and the peimary components of vector and matrix data types. In

fact, the primary components of vectors and matrices are considered equiv-

alent types. Vectors and slices of matrices are also considered to be

equivalent types when they contain the same number of components. User-

defined data types, such as array and Cartesian product aggregates, are

not implicitly convertible. Boolean and bit-string data types are also

not implicitly convertible to other data types, though bit-strings of

varying length are implicitly converted to the longer bit-string. These

conversion rules apply to parameter passing as well as assignment and

expression evaluation.

In addition, HAL/S provides a function which by-passes any type check-

ing and conversion by allowing the programmer to extract and assign the

bit-pattern representation of a data type.

HAL/S does provide the programmer with up to two levels of precision

for integer, float, vector, and matrix data types. The lengths of array

aggregates and strings may also be specified.

4.4.1.3 Dynamic Error Detection and Exception Handling

HAL/S provides constructs for run-time error detection and cor-
rection. However, the error conditions detected are implementation

dependent. Those errors that are defined are classified in groups. Each

error group is associated with a default system response, which may be to
terminate the program, fi_-up the error and continue, or ignore the error.
Two statement constructs are provided for the programmer to specify alter-

natives to the standard system response.

The errors which an implementation may detect are each assigned a

unique error code. Each group of errors is assigned a unique group code.

Through the error handling construct, the programmer may specify a

response to all errors, a specific group of errors, or one specific error

per error handier. The error handier may specify that the error be

ignored, that standard system action be taken, or it may specify code to

be executed in place of standard system action. The error handier may be

specified anywhere a statement may occur in the source code.

When an error occurs, execution is transferred according to the corre-

sponding error handier that precedes the statement causing the error. If
the error handler has turned off previous error handling or specifies sys-

tem action, the system default for the error is executed and execution

proceeds from the statement following the error. If the error handler

specifies ignore, no action is taken and execution again proceeds from the

statement following the error. If the handier specifies code to be exe-

cuted, it is executed and execution proceeds from the statement following

the error handler.

The programmer may also signal an error, whether system defined or
user defined.
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4.4.1.4 Error Containment

HAL/S provides structured alternatives to the GOTO statement. It

offers multiple levels of scoping and the ability to restrict the scope of
global variables. Both call-by-value and call-by-reference are used for

parameter passing, but the latter is explicitly coded in both the proce-
dure call statement and the procedure definition.

The HAL/S GOTO statement is limited to branches within the containing
module. It may not branch into a block of statements, but it may branch

within the containing block or out of one or more containing blocks.
HAL/S also provides an EXIT statement to branch to the end of a block, the

RETURN statement to branch to the end of a module, IF-THEN-ELSE and CASE

statements, iterative loop statements, and conditional ]oop statements.

The latter statements may potentially perform infinite loops.

The language provides multiple levels of scoping through nesting mod-

ules. External modules provide the outermost scope, but interfaces to

these modules must be explicitly specified to include a compilation unit
within this scope. Outer scope identifier names may be hidden by re-
declarlng the identifier within an inner scope.

HAL/S provides call-by-value parameter passing for input parameters.
Call-by-reference is required for assign parameters. Both assign parame-

ters and arguments must be explicitly specified by the ASSIGN key word in
both the procedure definition and the procedure call.

Address data types may be used for aliasing, but each address type is

restricted to exactly one object data type. The language preprocessor may
also be used to alias identifier names.

4.4.2 Modularity and Separate Compilation

4.4.2.1 Types of Modules Provided

HAL/S provides the following kinds of modules: procedure, function,

program, data, statement block, task, and update block. Task, update, and
statement blocks must be nested within other modules. Procedure and func-

tion modules may be nested within program modules. Data and program mod-

ules may not be nested. Otherwise, program modules may be treated as task
modules.

Update modules are used to access variables protected from simultane-

ous access by one or more concurrent tasks or programs. They are the only
modules in which such variables may be modified or updated.

4.4.2.2 Interfaces Between Modules

HAL/S checks module interfaces at compile-time. All module inv-
ocations must be within the scope of the name of the module to be invoked.

Procedure, function, and data modules are the only modules for which data
interfaces need to be checked.
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Data modules, known as COMPOOLs, are used as an interface for external

data types and objects. A11 external data types and objects are declared

in data modules.

4.4.2.3 Separate Compilation

Program, function, procedure, and data modules may be separately com-

piled as external modules in HAL/S. The language automatically generates

an interface specification for each compilation. This interface specifi-

cation must be specified at the beginning of any compilation unit that

references the external module.

HAL/S automatically stores interface specifications in a library the

first time a module is compiled and each time a compilation indicates that

the interface has changed. When an interface is modified, a11 referencing

modules must be recompiled. The specification may be manually generated

to allow compilation of referencing modules before the referenced module

has been compiled. However, the language does not provide any means to

check the manually produced specification against the corresponding

external module.

4.4.3 Provision for Real-Time System Proarammina Constructs

4.4.3.1 Real-Time Tasking Constructs

HAL/S provides .task modules and constructs for controlling their exe-
cution. Inter-task communication is via global data objects. A special

module exists to protect specified data objects from simultaneous access

by more than one task module.

HAL/S provides both task and program modules as tasking modules. A
task module, which must be nested within a program, is known only within

the scope of the enclosing program. This limits the control of task mod-
ules to statements within the enclosing program and other tasks within the

program.

Other than the first program which begins execution, all task and pro-

gram execution is initiated by a SCHEDULE statement. The SCHEDULE state-
ment can initiate execution immediately, at a particular time, after a

period of time, or conditionally based on events. The statement can also

cause cyclic initiation of execution based on time and specify the priori-

ty of a module to help decide conflicts in scheduling. The dependency of
an initiated task module on the ca11ing task module may also be specified.

A tasking module may be terminated by completing execution, by a CAN-

CEL statement, or by a TERMINATE statement. The CANCEL statement may be

executed by any other module to which the task module is known. The TER-
MINATE statement may only be executed by a module to which the tasking

module is dependent. It also causes all dependent tasking modules under
the terminated task module to be terminated.

The execution of a module can be suspended either by a higher priority

module being scheduled for execution or by the WAIT statement. The WAIT
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statement also specifies the conditions by which execution may be resumed,
which may be a specified time, a period of time, an event, or the com-

pletion of execution by all dependent task modules.

Execution may be indirectly controlled by statements which change the

priority of a module and by statements that alter events. Events are spe-
cial purpose boolean data types which may be signaled (turned on and off)
to trigger an event as well as act llke boolean values.

All inter-task module communication is through global variables. The
programmer may expllcitly protect groups of variables from simultaneous

access by more than one task module. Such variables are only accessible

via update modules. Update modules may be nested inside procedures, func-
tions, tasks, and programs.

4.4.3.2 Ability to Manipulate Bits and Bytes

HAL/S provides bit-string data types and operations for manipulating

memory at the bit level. It does not provide constructs for explicitly

specifying the addresses of data objects or modules. These constructs may
be provided on an implementation-dependent basis.

Bit-level object manipulation is provided in HAL/S by the SUBBIT func-

tion and pseudo function. This function/pseudo function allows any inte-
ger, float, character, or bit data type or array of such data types to be

referenced or assigned as a packed bit-string. Combined with bit-string

data types and operations, this may be used to manipulate any simple data
object or component of an aggregate data object.

The language does not provJde constructs for explicitly specifying

the address of bytes or words in memory. However, an implementation of
the language may provide special operations via a construct (called _-mac-

to) without altering the language or the language specification.

4.4.3.3 Input/Output Capabilities

HAL/S provides no low-level I/O capabilities. It does provide read

and write constructs for direct access I/0. The language offers no direct
control over creating, opening, or closing files.

4.4.3.4 Exception Handling Capabilities

HAL/S provides no constructs for connecting software modules to hard-
ware interrupts.

4.4.4 Stability and Portability

4.4.4.1 Stability of the Language Standard

For the HAL/S language, we used the HAL/S language specification writ-
ten by Intermetrics, Inc., for NASA Contract NAS9-13864 and modified under
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a subcontract to IBM Corporation for NASA contract NAS 9-14444. The lan-

guage and its specification belong to NASA and are subject to change

according to its direction.

The language has been used almost exclusively to produce code for the

space transportation system. It appears unlikely that the language stand-

ard will be changed in the near future.

4.4.4.2 Enforcement of the Language Standard

All existing implementations of HAL/S have been contracted directly

or indirectly by NASA. NASA may enforce or modify the HAL/S standard to

meet the requirements of stability and portability for the AIPS program.

4.4.4.3 Demand for the Language

HAL/S is the official language for NASA applications. It will remain

in existence as long as NASA is willing to fund support for the language.

4.4,5 Availability of Software Development Tools

4.4.5.1 Availability of Zmplementations for AZPS Processors

There are currently no implementations of HAL/S targeted to any of the

candidate AIPS processors. Intermetrics, Inc., has begun work on target-

ing HAL/S to a MIL-STD-1750A processor.

4.4.5.2 Availabillty of General Tools

HAL/S is available on the IBM 370 mainframe. Several tools have been

constructed for managing software development with HAL/S for the Space

Transportation System.

All implementations of the language include a cross-reference listing

generator, an optional assembly language listing generator, and an inter-
mediate code listing generator. A formatted listing is generated as part
of the implementations which automatically indents and counts levels of

nesting of nested modules and statement blocks, labels statements with
statement numbers and line numbers from the source code, and expands the

code into a three-line output format displaying exponents in an exponent

line and subscripts in a subscript line where necessary. In addition,
different data types, such as matrices, vectors, character, and bit types,

are marked with identifying symbols in the exponent line while arrays and

structures are surrounded by brackets and braces.

The implementations also provide a special linker which checks for

interface consistency at link time and a load module statistics generator

for generating a universal cross-reference listing for an entire load mod-
ule. This linker also provides the capability of loading modules into

explicit addresses in memory.
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4,4.5,3 Configuration Hanagement Tools

The language automatica]ly generates, stores, and labels interface

specifications in a library during compilation. This requires that mod-
ules must be compiled before modules that reference them. Other data man-

agement systems have been developed to store manual interfaces to allow

the development of modules in any order. Some of these systems also store
revisions of modules and allow the programmer to keep track of which mod-

ules need to be recompiled when an interface is modified.
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4.5 JOVIALJ73

4.5.1 Error Detection. Error Handl|nq. and Error Containment

4.5.1.1 Design Translation

The language JOVIAL J73 provides the programmer with some basic appli-

cations types and allows a wide range of user-defined types and oper-
ations. The language has a relatively large number of key words which are

easily understandable but also relies on relatively cryptic punctuation

and single character codes.

This language provides the basic applications types integer, float,

boolean, bit-string, and character-string. Operations for these basic

types include basic arithmetic operations, exponentlation for integer and
float types, modulus for integer types, absolute value, logical oper-

ations, and relational operations. There are no trigonometric, exponen-
tial, or other mathematical operations or functions other than a function

to indicate the sign of an arithmetic type.

User-defined types include array and Cartesian product aggregates,
and enumerated lists. Varying precisions for integer, float, and fixed

data types may also be specified. Address data types may be used to con-
struct linked lists. In addition, a module type for encapsulating data is

also provided. Bui|t-in functions are provided to compute the next or

previous elements in the in an enumerated list type. Built-in functions

are also provided for address, array, and Cartesian product data types to
indicate the siz_e and bounds of data objects declared-with these types.

User-defined functions and procedures may accept or return any built-in or

user-defined data type, including a module data type.

JOVIAL J73 provides program, function, procedure, and data modules.
No task modules are provided. Data and type declarations-and interfaces

to procedure and function modules may be encapsulated within a data module
for interface checking and access control. Groups of statements may be

encapsulated within a BEGIN-END block to be treated as one statement.

Identifier names may contain from two to any number of characters

including a dollar sign and apostrophe characters. Lower case characters

are equivalent to upper case characters. Only the first thirty-two char-

acters are used to distinguish one name from another. Iteration loop var-
iable names are limited to one character in length. For external module

names, implementations may recognize even fewer characters.

Comments are delimited at both ends by one of two characters, per cent

signs (_) or double quotes ("). There is no length Iimit for a comment.

JOVIAL J73 utilizes eighty-seven key words, sixty-eight, of which,

are English with English meanings. Built-in type identifiers, however,
are all one character in length; a programmer may alias these with more

descriptive identifier names. The syntax for control structures is
divided roughly into half English key words and half punctuation. For

example, the syntax for an iterative loop appears as follows:
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FOR I : I BY 3 WHILE I < 12

PROCEDURE'CALL'PASSING (1) ;

An example of a CASE statement is:

CASE x'var iable;

BEGIN

(DEFAULT) other 'count - other 'count + I;

('A') a'count - a'count + I;

('B') b'count - b'count + I;

('C') c'count = c'count + I;

END

Semicolons are required to terminate simple statements, but not to
terminate BEGIN-END blocks. Also, the user-defined values used in enumer-

ated lists must have the syntax V(identifier) both when defined and when
referenced in a statement.

4.5.1.2 Static Error Detection

JOVIAL J73 is a weakly typed language. Although it provides a wide

range of precision specification for each data type, implicit conversions
are allowed in most places where a compiler can perform the conversion.

Integer, fixed, float, and bit-string data types are implicitly con-
vertible to float types. Otherwise, integer types are implicitly convert_

ible to integer types, fixed types to fixed types, and bit-string types to
bit-string types. Any address data type is implicitly convertible to an

unrestricted address data type. Enumerated list types are implicitly con-

vertible providing they contain exactly the same values. However, the
ordering of the lists does not restrain the conversion.

Implicit conversion is disallowed for user-defined types, such as
array and Cartesian product aggregates and data module types. However,

array and Cartesian product aggregates may be explicitly converted to
bit-string type and vice versa. Similarly, address data types may be

explicitly converted to bit or integer data types and vice versa. Within

user-defined aggregates, component declarations may overlay one another

allowing the programmer to reference the same component object as two dif-
ferent types simultaneously.

JOVIAL J73 allows the programmer to specify explicitly how many bits

of precision to use for integer, float, fixed, and bit-string types. In
addition, the programmer may specify the manner in which values should be

rounded, up or down, or truncated when a conversion to that data type
Occurs.

4.5.1.3 Dynamic Error Detection and Exception Handling

Run-time error conditions are defined in JOVIAL J73, but the manner in

which they are handled is implementation dependent. Some error conditions
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are specified as producing undefined results. There is a construct for

handling user defined exceptions.

Procedure calls may optionally specify an abort clause. This clause

specifies a statement label to which control is to be transferred if an
ABORT statement is executed. The programmer may execute an ABORT state-

ment within a procedure to generate a user exception. Execution branches

to the statement specified by the first inner-most procedure call that

specifies an abort option.

JOVIAL J73 also provides built-in functions and constants provided by

each implementation which specify the maximum and minimum values of attri-
butes for. each data type in that implementation. These include maximum

integer value, minimum integer value, maximum and minimum float value,
maximum float precision, and similar constants for fixed data types as
well. Built-in functions provide the same information for specific data

types based on the type and precision of the argument passed to the func-
tion.

JOVIAL 373 has no built-in constructs for handling hardware

exceptions or error conditions which may be defined for the language.

4.5.1.4 Error Containment

JOVIAL J73 provides a less restrictive form of the GOTO statement. It

also provides explicit control of the scoping of global variables. Param-

eter passing may also be explicitly specified as call-by-value, call-by-

value-result, and call-by-reference.

The GOTO statement in JOVIAL J73 is not allowed to branch outside of a

containing modu]e with one exception. Branching is allowed within a con-

taining block of code or out of any number of containing b]ocks of code.
It may not branch into a block of code even from within a block at the same

or a higher level. The only time a GOTO may branch outside of a module is
if the target statement is passed to the module as a parameter. In such a
case, the exit from the modu]e occurs without completing assignments to

any assign parameters or returning any function value.

Alternatives to the GOTO statement include the EXIT statement to exit

a block of code, the RETURN statement to exit a module, conditional state-

ments such as IF-THEN-ELSE and CASE, iterative loop statements, and condi-

tional loop statements. The latter have the potential to be infinite

loops.

The language offers multiple levels of scoping dependent upon the

nesting of modules. Global identifiers are defined in data modules.
Access to each data module must be explicitly specified for any compila-

tion unit and may explicitly restrict access to selected identifiers with-
in the data module. Identifiers from enclosing scopes may also be hidden

by the re-declaration of the identifiers within an inner scope.

JOVIAL J73 parameter passing defaults to call-by-value for simple

input parameters, call-by-value-result for simple assign parameters, and
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call-by-reference for aggregate parameters. However, the programmer may

explicitly specify any of the above conventions for any parameter.

Aliasing in JOVIAL J73 may be achieved through textual substitution by

the language preprocessor, through the use of address data types, and
through the use of discriminated union. Address data types may be

restricted or unrestricted. A data object may be referenced by more than

one identifier and even as a different type through the use of unre-
stricted address data objects or discriminated union.

4.5.2 Modularity and Separate ComDi|ation

4.5.2.1 Types of Modules Provided

JOVIAL J73 provides five basic modules: program, procedure, func-
tion, data, and statement block. Statement blocks must be nested within

program, procedure, or function modules. Procedure and function modules

may be nested within program, procedure, or function modules. Data mod-

ules must be compiled separately and may not be nested.

Each program contains exactly one program module where execution is to

begin. Data modules, in JOVIAL J73, contain declarations for data types,
data objects, and for function and procedure modules.

4.5.2.2 Interfaces Between Modules

The interface for a data module consists of aII data objects declared
as external, ai] external procedure and function interface declarations,

and all data types. When the data module is specified as accessible to
another module, the specification may limit which declarations are

allowed within the scope of the referencing module.

External procedures and functions may be used by other modules only if
their corresponding interfaces are declared within the scope of the mod-

ules. These interfaces may be declared within the invoking module or

within data modules that are included in the scope of the invoking module.

4.5.2.3 Separate Compilation and Interface Management

Program, procedure, function, and data modules may be compiled sepa-
rately. Procedure and function modules must be defined as external mod-

ules to be referenced outside the compilation unit. Data objects in data
modules must a}so be defined as external objects to be referenced outside
the module.

The language saves the interface of each data module compilation. To
reference an identifier within the data module, a compilation unit must

specify the name of the data module using an INCLUDE directive at the

beginning of the compilation unit. By including a data module with a com-

pilation unit containing external procedures and functions, a programmer
can allow the language to check the procedure and function interface dec-

larations within the data module against the corresponding procedure and
function definitions in the compilation unit.
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The external procedure and function module declarations can be

checked against the corresponding module definitions only if the declara-

tions are in a data module and the module is specified for reference in

the corresponding compilation unit containing the procedure or function

module definition. This is necessary only for interfaces to be automat-

ically checked against definitions and is otherwise not required.

4.5.3 Provision for Real-Time System Programming Constructs

4.5.3.1 Real-Time Tasking Constructs

The language JOVIAL J73 provides no real-time tasking constructs.

4.5,3.2 Ability to Manipulate Bits and Bytes

JOVIAL J73 provides bit-strlng data types and operations including

all logical operations and a substring facility to assign and reference

slices of bit-strings.

JOVIAL J73 allows an imp]ementation to provide built-in procedures

and functions to implement target machine instructions which are other-
wise not accessib]e via the ]anguage, such as instructions for loading and

reading special control registers,

4.5.3.3 Input/Output Capabilities

JOVIAL J73 provides abso]ute]y no I/0 capability.

The language design requires I/O routines to be explicitly written for

an application.

4.5.3.4 Exception Handling Capabilities

JOVIAL J73 has no interrupt handling constructs.

The language provides no simple means of connecting software modules
to hardware interrupt addresses. This may be provided by

implementation-dependent functions as described above in 4.5.3,2.

4,5.4 Stability and Portabilltv

4.5.4.1 Stability of the Language Standard

The language JOVIAL J73 has been defined by the MIL-STD-1589B since
June 6, 1980, and is required by the Air Force for all avionics embedded

computer systems until Ada becomes available. Studies are being conducted
by the Air Force concerning potentia] modifications to be made to the lan-

guage, but no date has been set for the forthcoming release of
MIL-STD-1589C. Extensions to the language are allowed in the form of

implementation-dependent functions. These are generally limited to func-

tions required for systems deve]opment rather than to extend the features

of the language.
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4.5.4.2 Enforcement of the Language Standard

Almost all JOVIAL J73 implementations are produced for the Air Force

or for contractors working on Air Force projects. The Air Force requires

all implementations used to produce code for these projects to have run a

set of validation tests. These tests are maintained by the JOVIAL J73
Language Control Facility at Wright-Patterson Air Force Base which also

publishes a list of implementations that are under development or are now

available as validated compilers. Real extensions to the language, beyond

implementation-dependent features, are limited to experiments, sug-

gestions for MZL-STD-1589C, and/or implementations not used to produce
code for the Air Force.

4.5.4.3 Demand for the Language

There are over twenty-eight validated JOVIAL J73 compilers under
development or completed. These are hosted on DEC and IBM mainframe com-

puters and targeted both to the host computer and to over seven different

target processors including MIL-STD-1750 and 1750A, Zntel 8086, Zilog

Z8002, An/AYK-15, and Texas Instruments TI-990 and TI9900. The past
investment of the Air Force in JOVIAL J73 software insures that the lan-

guage will be available for a number of years.

4.5.5 Availabilltv of Software DeveloBment Tools

4.5.5.1 Availability of Implementations for AZPS Processors

JOVIAL J73 is available on the following microprocessors through the
listed companies=

Zntel 8086 Produced by Proprietary Software Systems, this imple-
mentation is available as a cross-compiler hosted on an
IBM 370 and on a DEC 10 mainframes.

MZL-STD-1750A Produced by Software Engineering Associates, this

implementation is available as a cross-compiler hosted
on an IBM 370 and on a DEC 10. Another implementation,

produced by Proprietary Software Systems, is available
as a cross-compiler hosted on an IBM 370 and on a DEC

VAX. A third implementation, from the F16 Systems Pro-
gramming Office (SPO) and hosted on the DEC VAX and on

the IBM 370, is scheduled to be validated in 1984.

Zilog Z8001 Produced by Software Engineering Associates, this

implementation is available as a cross-compiler hosted
on a DEC 10 and on a DEC 20.

Zilog Z8002 Produced by Proprietary Software Systems this implemen-
tation, hosted on an IBM 370, is scheduled to be vali-

dated in 1984. Another implementation produced by
SofTech is hosted on an IBM 370, on a DEC 10, and on a

DEC 20. A third implementation is produced by Software
Engineering Associates and is hosted on a DEC 10. A
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fourth implementation, available from the FiB Systems

Programming Office (SPO) and hosted on an IBM 370, is

scheduled to be validated in i984.

4.5.5.2 Availability of General Implementations

Tools for supporting JOVIAL J73 software development are generally

contracted by the Air Force or developed by companies working on contracts

for the Air Force or on JOVIAL J73 compilers.

Some implementations include cross-reference listing generators.

Other tools, such as debuggers and assemblers, are developed for specific

applications and/or target processors. A JOVIAL J73 interactive debugger
is available from TRW that is hosted on a DEC I0.

4.5.5.3 Configuration Management Tools

A program support library for JOVIAL source code is available from

SofTech on the IBM 370 mainframes.
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4.6 PASCAL

4.6.1 Error Detection. Error Handlina. and Error Containment

4.6.1.1 Design Translation

The language Pascal provides the data types integer, float, boolean,
and character. Operations are limited to basic arithmetic operations, the

trigonometric functions sine, cosine, and arc-tangent, the exponential

functions exponentiation, natural log, and square root, and miscellaneous
mathematical functions such as absolute value, square, decrement and

increment for integers, and truncate and round for float.

User-defined data types include array, Cartesian product, and set

aggregates, address types for dynamically allocated data types and linked
lists, enumerated lists, and range specifications for integer data types.

Built-in operations for enumerated lists and integer ranges include func-
tions which return the "increment" or the "decrement" of the value passed.

Enumerated list, boolean, and character data types also have a built-in
function which returns the implementation integer value corresponding to

the data type value passed. Set operations include union, intersection;
tests for subset, superset, and membership; and set creation from a group

of values. User-defined operations, functions and procedures, may accept

arguments of any data type, including functions and procedures, and func-

tions may return a value of any data type.

Pascal modules include procedures, functions; and a program module.

No tasking or data modules are provided. Groups of statements may be

encapsulated within a BEGIN-END block to be referenced as one statement.

Identifier names are limited to the length of a line and consist only

of letters and digits; lower and upper case letters are equivalent. Only
the first eight characters, however, are used to distinguish between

names.

Comments are delimited by braces. There are no limits to the length
of a comment.

Pascal uses over eighty key words of which over fifty are English.

Though some operations have abbreviated names and punctuation, the syntax

of control structures are generally English in appearance and meaning.

For example, the conditionals:

IF value < 5 THEN

value :- 5

ELSE IF value > 10 THEN
value :- 10

ELSE

value :- next_value

and

pRKC_.,liD1NC P#._E _'..ATi_( I':OT FILMED
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CASExvariable OF

'A' • a_count :- a_count + 1

'B' : b_count :- b_count + 1;

'C' : c_count :- c_count + 1
END

Iterative statements are particularly easy to understand:

WHILE value < 5 DO

value - nextvalue

and

FOR index := 1 TO 12 DO

thisprocedure

and

REHEAT

thisprocedure;

thatprocedure
UNTIL value > 5

4.6.1.2 Static Error Detection

Pascal has been advertised as a strongly typed language. However,

this assertion is not exactly true. Besides implicit conversion of inte-
ger types to float types, the language makes it difficult to disallow

implicit conversions between similar user-defined types as explained

below. The failure to distinguish between similar data types limits the
ability to specify types that are conceptually unique though similar in

implementation.

Float, character, boolean, and user-defined aggregate data types are

not implicitly convertible. However, integer values are freely converted
to float values when mixed with float values in an expression. Different

user-defined data types are implicitly convertible, such as over-|apping
integer ranges and enumeration data types that share the same user-defined

values. Two different data types with the exact same definition are con-

sidered as one data type.

Pascal allows the programmer to constrain the range of values allowed

for an integer type. However, the range constraint is not checkable at
compile-time. The language does not provide the means to specify differ-

ent sets of values for float types in terms of precision.

The use of variant Cartesian product aggregates cannot be checked at

compile time. Such an aggregate may have a varying number of components
or component types, depending on the value of a specified discriminating

component. This construct allows a programmer to circumvent the type

checking by reassigning the discriminating component before accessing the
value of a variable.
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4.6.1.3 Dynamic Error Detection and Exception Handling

PASCAL provides no constructs for detecting or handling run-time

errors.- The standard system action when a run-time error occurs is to

abort the program.

4.6.1.4 Error Containment

Pascal has a GOTO statement, but provides a number of structured

alternatives. Though it provides multiple levels of scoping, there are no
restrictions on the use of a variable within its scope_ Parameter passing

is timited to call-by-value and call-by-reference, but these are explic-

itly specified only in the procedure definition.

The Pascal GOTO statement is restricted to branches within a module

and within a block of code. It may also branch out of any number of con-

taining code blocks, but is not allowed to branch into a code block even
after branching out of a block at the same level. Alternatives to the
GOTO include iterative loops, conditionals, such as IF-THEN-ELSE and CASE

statements, and conditional loops. The conditional loops all have the

potential to be infinite loops.

The language provides multiple levels of scoplng dependent upon the

nesting of modules. There are no restrictions on the use of identifiers
within their respective scopes except that they may be hidden by redecla-
ration within a internally nested module.

All input parameters are call-by-value. All output parameters are

call-by-reference. These are distinguished in the procedure definition

but not in the procedure calls.

Aliasing may be achieved through address and discriminated union data

types. Each address data type is restricted to point to exactly one data
type. However, the discriminating component in a discriminated union type

may be reassigned to change the definition of the type while referencing

the same data object.

4.6.2 Modularity and Seoarate Comoilation

4.6.2.1 Types of Modules Provided

Pascal provides program, function, and procedure modules. Each pro-

gram is allowed exactly one program modu]e. Function and procedure mod-
ules must be nested within the program module and can be nested within

each other to any depth,

4.6.2.2 Znterfaces Between Modules

The interfaces of the procedure and function modu]es are checked at

compi]e time to be sure arguments and parameters match in both number and

type,
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4.6.2.3 Separate Compilation and Interface Management

Pascal has no provision for separate compilation.

4.6.3 Provision for Real-Time System Programmlna Constructs

4.6.3.1 Real-Time Tasking Constructs

The language Pascal provides no real-time tasking constructs.

4.6.3.2 Ability to Manipulate Bits and Bytes

Pascal provides boolean arrays and boolean operations. Boolean

arrays may be packed such that access is provided to every bit in a phys-
ical word. There is no provision for explicitly specifying the location
of a data object in memory.

There are no provisions in the language for specifying explicitly

where a data object resides in memory, The language does not provide any

means to execute implementation dependent machine instructions that might
be needed for systems applications. There is no system level control of

special control registers for a target implementation built into the lan-
guage.

4.6.3.3 Input/Output Capabilities

Pascal has no low-level I/O capabilities.

All I/O in Pascal is limited to character stream I/O.

4.6.3.4 Exception Handling Capabilities

Pascal provides no means of connecting software modules to hardware
interrupts.

4.6.4 Stability and Portability

4.6.4.1 Stability of the Language Standard

Two Pascal standards are currently recognized: the ANSI/IEEE

770X3.97-1982 and the standard published by the International Organiza-
tion for Standardization (ISO). It is the established practice of ANSI

not to change a standard more often than every five years.

For this study, we used the text by Grogono [3] which is based on the
third draft of the British standard for Pascal. The British standard was
the basis for the ISO standard.

4.6.4.2 Enforcement of the Language Standard

Both Pascal standards are applied voluntarily. Implementations of

the language generally include extensions to the standards since the lack
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of system constructs in Pascal make it very difficult to use otherwise.

Enforcement of the standard may occur only when an implementation
claims to be standard or standard with extensions, and it does not meet

the standard. When this fact is called to the attention of ANSI, the ANSI

lawyers may decide to bring suit against the company making the claims.
The need for ANSI to remain viable as a standards organization provides

incentive for enforcement.

4.6.4.3 Demand for the Language

Pascal has quickly become the number one teaching language at American

colleges and universities, The wide-spread popularity and familiarity of

the language make it ualikely to fall into disuse in the near future.

4.6.5 Availability of Software Develooment Tools

4.6.5.1 Availability of Implementations for AZPS Processors

Imp]ementations of Pascal where found for the following processors.
Each implementation included extensions beyond the language standard.

• Intel IAPx 186

• Intel IAPx 286

• MIL-STD-1750A (MACDAC)

• Motorola MC68000

• Motorola MC68010

• National 16032

• National 32032

4.6.5.2 Availability of General Tools

Tools to support Pascal development are generally tailored for spe-

cific implementations of the language that contain extensions beyond the
standard. We found no tools that were generally applicable to software

development with standard Pascal.

4.6.5.3 Configuration Management Tools

We found no configuration management tools generally available for

standard Pascal.
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5.0 CONCLUSIONS

From a comparison of the six different languages, Ada was chosen as

the language most suited for the AIPS program. The attributes of Ada
would contribute more to the reliability, testability, and manageability

of AIPS software development than any of the other languages. The wide-

spread demand for Ada indicates that it will become available on a wide

range of processors, as evidenced by the number of implementations cur-
rently under development. Together with the strict enforcement of the Ada
standard by the Department of Defense, this implies that Ada will become

the most portable of the languages in the next several years. All of the
above result in increased development efficiency over both the short term

and the long term.

The main drawbacks to choosing Ada are the availability of implementa-

tions of the language, the maturity of the Ada constructs for real time

systems programming, allowable discrepancies between implementations, and
the availability of software development tools. There are currently no

validated implementations for any of the AIPS candidate processors,
though several efforts are scheduled to be completed this year and other
efforts have been or are being started. The validation tests will guaran-

tee a relatively high level of reliability for any validated implementa-
tion. However, run-time efficiency, real-time operation¢, and optional

constructs such as priority and the ability to use machine language will
need to be evaluated for each individual implementation to determine how

they will impact software design and implementation for the AIPS applica-
tions. New tools and development systems will also need to be evaluated

as they become available.

5.1 ERROR DETECTZON, ERROR HANDLZNG, AND ERROR CONTAINMENT

Ada is superior to any of the other languages in all areas of error
detection and containment. The language also offers the widest facility

for defining and encapsulating abstractions for data types and oper-
ations, Dangerous constructs that can cause errors which are difficult to
detect can be isolated and exhaustively tested to minimize these errors.

Pascal and Ada are the most readable of the six languages. Both lan-

guages rely more on English key words and meanings than on symbols and

punctuation. HAL, JOVIAL, C, and FORTRAN require a greater degree of mem-
orization to understand the use and meanings of symbols, key words, and

punctuation.

Ada provides a general facility to define and encapsulate data types

and operations. None of the other languages make as clear a distinction
between the interface to an abstract data type or operation and an imple-

mentation. Though the other languages offer more data types, such as vec-
tor and matrix in HAL/S, or operations, such as the built-in functions of

FORTRAN 77, Ada allows the programmer not only to develop these data types
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and operations, but to tailor them for a particular application or imple-
mentation without changing the interfaces.

Ada is also the most strongly typed language in the study. The level

of explicitness for the definitions of abstractions is enforced by both

compile-time and run-time testing of the boundaries of such definitions.

HAL and JOVIAL were the only other languages to provide general run-time

exception handling capabilities.

Each language provided control and data structures that could cause

errors which are difficult to detect or contain: Ada allows some of these

operations and structures, such as address data types and unchecked con-

version, to be encapsulated within modules where they can be contained

through run-time checks and testing. Other constructs, such as global
variables, aggregate parameter passing, and renaming, may be required by
some applications for efficiency of coding and execution, but must be

designed, coded, and tested with extra caution to maintain reliability and
flexibility between implementations.

5.2 MODULARITY AND SEPARATE COMPILATZON

Ada is the only language that provided separate compilation for both

internally nested modules and externat modules. Uniquely, the language

allows external modules to interface directly with internally nested mod-
ules that are compiled separately. As with HAL and JOVIAL J73, Ada allows

access to global identifiers to be llmited, through interface specifica-
tions. Only Ada and JOVIAL J73 allow related data and module interfaces

to be encapsulated as one interfacing unit.

5.3 PROVISION FOR REAL-TIME SYSTEM PROGRAMMING CONSTRUCTS

HAL/S and Ada are the only languages with built-in tasking constructs.
The two languages present two different philosophies for real-time task-

ing control. Only HAL/S has been tested in the field. However, for

either language, Ada or HAL/S, the behavior of tasking control constructs
must be examined on an implementation by implementation basis to determine
the applicability to a specific application.

HAL/S, JOVIAL J73, and Ada are the only languages with built-in con-

structs for accessing implementation dependent machine instructions. All

these constructs are implementation dependent. Only Ada provided con-

structs for attaching interrupts to interrupt handlers at the source code

level. C and Ada both provide low-level I/0 constructs, which are also

implementation dependent.
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5,4 STABILITY AND PORTABILITY

Ada appears to be the most stable and, eventually, portable of the six

languages due to high demand for the language and the DoD policy of strict
standards enforcement. AI| implementations are required to undergo vali-

dation testing. A DoD wide office (AJPO) has been established to monitor

the progress of language development and usage and to enforce the stand-
ard, even, if necessary, by legal means. The name of the language has

been registered as a trademark of the U.S. Government to support this
enforcement. JOVIAL J73 is the only other ]anguage for which imp]ementa-

tions are required to undergo va]idation. The JOVIAL J73 standard is

enforced by the Air Force. A]I current implementations of HAL/S are con-
tracted and controlled by NASA. The other languages are defined or wil]

be defined by ANSI standards, which are applied vo]untariIy. Enforcement

is limited to implementations that claim to follow an ANSI standard.

Certain optional features in Ada detract from the stability of the

language. These include the implementation of real time constructs and

the ability to specify the machine representation of data types. However,
these features are distinctly defined in the language standard and may be

treated as non-portable features.

5.5 AVAILABILITY OF SOFTWARE DEVELOPMENT TOOLS

JOVIAL software development tools have generally been designed for

specific sites and hardware or for specific applications. HAL software

development tools have been implemented with the language, such as cross
references, assembler listings, and global load module cross reference

listing programs. Development tools for the language C are generally
available and have been well tested and used. They are also generally

portable between UNIX operating systems.

Ada software development tools have been produced and more are in

development. However, due to their recent development, they have not been
tested as thoroughly as general tools for C and for HAL. Two major
efforts are underway to produce integrated software development environ-
ments for Ada: one on a DEC VAX and the other on an IBM 370-series

mainframe. Each includes an implementation of the language, configura-

tion management, documentation facilities, and facilities for building
and attaching other tools, such as cross reference listing generators and

assembly language listers.
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